EV Engineering & Infrastructure

  • News
  • Articles
  • Batteries
  • Charging
    • Wireless Charging
    • Vehicle-to-Grid (V2G)
  • Electrification
  • Testing and Safety
  • R&D
  • Learn
    • Learning Center
    • Tech Toolboxes
    • Webinars
  • Resources
    • Digital Editions
    • Diversity & Inclusion
  • Advertise
  • Subscribe

Researchers use polymer binders to enhance solid-state electrolytes

By Michelle Froese | November 8, 2024

Scientists at the Department of Energy’s Oak Ridge National Laboratory are accelerating the development of next-generation solid-state batteries using a solid yet flexible polymer film. This innovation could pave the way for electric vehicle (EV) power with durable, solid-state electrolyte sheets.

Researchers at Oak Ridge National Laboratory made a thin, flexible, solid-state electrolyte that may double energy storage for EV vehicles and other devices. (Image: Adam Malin/ORNL, U.S. Dept. of Energy)

These polymer sheets may enable scalable production of solid-state batteries with higher energy density electrodes. By separating positive and negative electrodes, they provide high-conduction pathways for ions and prevent dangerous electrical shorts.

Compared to conventional liquid electrolytes, which are flammable, chemically reactive, and prone to leakage, these solid-state sheets promise enhanced safety, performance, and energy density.

“Our achievement could at least double energy storage to 500 watt-hours per kilogram,” said ORNL’s Guang Yang. “The major motivation to develop solid-state electrolyte membranes that are 30 micrometers or thinner was to pack more energy into lithium-ion batteries so your electric vehicles, laptops and cell phones can run much longer before needing to recharge.”

The work, published in ACS Energy Letters, improved on a prior ORNL invention by optimizing the polymer binder for use with sulfide solid-state electrolytes. It is part of ongoing efforts that establish protocols for  selecting and processing materials.

The goal of this study was to find the “Goldilocks” spot — a film thickness just right for supporting both ion conduction and structural strength.

Current solid-state electrolytes use a plastic polymer that conducts ions, but their conductivity is much lower than that of liquid electrolytes. Sometimes, polymer electrolytes incorporate liquid electrolytes to improve performance.

Sulfide solid-state electrolyte has ionic conductivity comparable to that of the liquid electrolyte currently used in lithium-ion batteries. “It’s very appealing,” Yang said. “The sulfide compounds create a conducting path that allows lithium to move back and forth during the charge/discharge process.”

The researchers discovered that the polymer binder’s molecular weight is crucial for creating durable solid-state-electrolyte films. Films made with lightweight binders, which have shorter polymer chains, lack the strength to stay in contact with the electrolytic material. By contrast, films made with heavier binders, which have longer polymer chains, have greater structural integrity.

Additionally, it takes less long-chain binder to make a good ion-conducting film.

Read the full article here.

 

You Might Also Like


Filed Under: Technology News
Tagged With: oakridgenationallaboratory
 

Next Article

← Previous Article
Next Article →


 
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EV professionals.

Featured Contributions

  • What role do thermal interface materials (TIMs) play in EV battery systems?
  • How evolving demands are driving innovations in EV battery safety and materials
  • How large EV battery packs can be safely recycled without disassembly
  • Changing from traditional powertrains to electrified machines requires optimizing the hydraulic system components to reduce energy consumption and extend vehicle range. What factors impact electric vehicle system design?
  • How to safely detect minute physical Li-ion battery flaws
More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

Learning Center

EE Learning Center
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Sponsored Content

  • Converting custom materials for EV applications
  • Advantech Powers Versatile Electric Vehicle Charging Systems

EV Training Days

ev
EV Engineering & Infrastructure
  • 5G Technology
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • Design Fast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer’s Garage
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Contact Us

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search EV Engineering & Infrastructure

  • News
  • Articles
  • Batteries
  • Charging
    • Wireless Charging
    • Vehicle-to-Grid (V2G)
  • Electrification
  • Testing and Safety
  • R&D
  • Learn
    • Learning Center
    • Tech Toolboxes
    • Webinars
  • Resources
    • Digital Editions
    • Diversity & Inclusion
  • Advertise
  • Subscribe