Researchers at the University of Waterloo have developed a novel magnesium-based electrolyte, paving the way for more sustainable and cost-effective batteries for electric vehicles (EVs) and renewable energy storage.

An example of a coin cell, which includes a magnesium-ion full battery with an organic cathode, magnesium metal anode, and the Waterloo-designed electrolyte. (University of Waterloo)
This breakthrough overcomes long-standing challenges in magnesium battery technology, particularly in developing electrolytes that can support efficient energy storage and transfer. The team is one step closer to bringing magnesium batteries to reality.
The new magnesium electrolyte is stable and safe while maintaining high-performance levels, making it a promising alternative to lithium-ion technology. Unlike lithium, magnesium is more abundant, less costly, and has a higher volumetric energy density, which could lead to significant cost reductions and increased battery lifespans.
Linda Nazar, a professor in the Department of Chemistry and Canada Research Chair in Solid State Energy Materials, and Chang Li, a postdoctoral fellow in the Nazar Group, have designed an electrolyte that enables a highly efficient magnesium anode. Li and Nazar collaborated with UC Berkeley and Sandia National Labs for this research.
Batteries have three main parts: a cathode (the positive side of the battery), an anode (the negative side of the battery), and a chemical solution known as an electrolyte that allows the flow of electrical charge between the cathode and anode.
Initial research on magnesium-based batteries generated one volt — less than what a standard AA battery operates at (1.5 V). The electrolyte that Li and Nazar devised was found to operate at up to three volts with additional improvement expected to come with an even better cathode design.
“Magnesium has always been an attractive option for battery technology due to its abundance and potential for higher energy density,” said Dr. X, lead researcher on the project. “However, the development of stable and effective electrolytes has been a significant challenge. Our new design marks an important step forward in addressing these barriers.”
The team’s innovative electrolyte design also improves compatibility with high-energy cathode materials, opening new possibilities for magnesium batteries in large-scale energy storage and transportation applications. This development comes at a critical time when the global demand for sustainable energy solutions is rapidly increasing.
The University of Waterloo’s research demonstrates how magnesium-based batteries could complement or even replace lithium-ion batteries in specific applications, particularly where cost and resource sustainability are top priorities.
Read the full article here. Their research, “A Dynamically Bare Metal Interface Enables Reversible Magnesium Electrodeposition at 50 mAh cm-2,” was published in Joule; December 2024.
Filed Under: Batteries, Technology News