EV Engineering & Infrastructure

  • News
  • Articles
  • Batteries
  • Charging
    • Wireless Charging
    • Vehicle-to-Grid (V2G)
  • Electrification
  • Testing and Safety
  • R&D
  • Learn
    • Learning Center
    • Tech Toolboxes
    • Webinars
  • Resources
    • Digital Editions
    • Diversity & Inclusion
  • Advertise
  • Subscribe

New recycling method recovers 98% of lithium from EV batteries

By Michelle Froese | October 20, 2023

Researchers at Chalmers University of Technology in Sweden have presented a new and efficient way to recycle metals from spent electric vehicle (EV) batteries. The method allows recovery of 100% of the aluminum and 98% of the lithium in EV batteries.

Image: Chalmers University of Technology

What’s more: the loss of valuable raw materials such as nickel, cobalt, and manganese is minimized, and zero costly or harmful chemicals are required in the process because the researchers use oxalic acid — an organic acid that can be found in the plant kingdom.

“So far, no one has managed to find exactly the right conditions for separating this much lithium using oxalic acid, whilst also removing all the aluminum,” said Léa Rouquette, PhD student at Chalmers. “Since all batteries contain aluminum, we need to be able to remove it without losing the other metals.”

In the University laboratory, the pulverized contents of used EV battery cells — which take the form of a finely ground black powder — are dissolved in the acid. By fine-tuning the temperature, concentrations and time taken, the researchers say their new process has provided “remarkable” results.

The aqueous-based recycling method is called hydrometallurgy. In conventional hydrometallurgy, all the metals in an EV battery cell are dissolved in an inorganic acid. Next, the “impurities” such as aluminum and copper are removed. Lastly, it’s possible to separately recover valuable metals such as cobalt, nickel, manganese, and lithium.

Even though the amount of residual aluminum and copper is small, it requires several purification steps and each step in this process can cause lithium loss. With the new method, the researchers reverse the order and recover the lithium and aluminum first. Therefore, they can reduce the waste of valuable metals needed to make new batteries.

The latter part of the process, in which the black mixture is filtered, is also reminiscent of brewing coffee. While aluminium and lithium end up in the liquid, the other metals are left in the “solids.” The next step in the process is to separate aluminium and lithium.

“Since the metals have very different properties, we don’t think it’ll be hard to separate them. Our method is a promising new route for battery recycling — a route that definitely warrants further exploration,” says Rouquette.

“As the method can be scaled up, we hope it can be used in industry in future years,” added Martina Petranikova, Associate Professor at the Department of Chemistry and Chemical Engineering at Chalmers.

Petranikova’s research group has spent many years conducting cutting-edge research in the recycling of metals found in lithium-ion batteries. The group is involved in various collaborations with companies to develop electric car battery recycling and is a partner in major research and development projects, such as Volvo Cars’ and Northvolt’s Nybat project.

Read the full article from Chalmers University of Technology here.

More about the research:
The scientific article, Complete and selective recovery of lithium from EV lithium-ion batteries: Modeling and optimization using oxalic acid as a leaching agent was published in the journal Separation and Purification Technology. The study was conducted by Léa Rouquette, Martina Petranikova and Nathália Vieceli at the Department of Chemistry and Chemical Engineering at Chalmers University of Technology, Sweden.

Source:

  • Materials from Chalmers University of Technology.

 

You Might Also Like


Filed Under: Batteries, Technology News
Tagged With: battery, chalmersuniversityoftechnology, electricvehicles, ev
 

Next Article

← Previous Article
Next Article →


 
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EV professionals.

Featured Contributions

  • What role do thermal interface materials (TIMs) play in EV battery systems?
  • How evolving demands are driving innovations in EV battery safety and materials
  • How large EV battery packs can be safely recycled without disassembly
  • Changing from traditional powertrains to electrified machines requires optimizing the hydraulic system components to reduce energy consumption and extend vehicle range. What factors impact electric vehicle system design?
  • How to safely detect minute physical Li-ion battery flaws
More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

Learning Center

EE Learning Center
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Sponsored Content

  • Converting custom materials for EV applications
  • Advantech Powers Versatile Electric Vehicle Charging Systems

EV Training Days

ev
EV Engineering & Infrastructure
  • 5G Technology
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • Design Fast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer’s Garage
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Contact Us

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search EV Engineering & Infrastructure

  • News
  • Articles
  • Batteries
  • Charging
    • Wireless Charging
    • Vehicle-to-Grid (V2G)
  • Electrification
  • Testing and Safety
  • R&D
  • Learn
    • Learning Center
    • Tech Toolboxes
    • Webinars
  • Resources
    • Digital Editions
    • Diversity & Inclusion
  • Advertise
  • Subscribe