EV Engineering & Infrastructure

  • News
  • Articles
  • Batteries
  • Charging
    • Wireless Charging
    • Vehicle-to-Grid (V2G)
  • Electrification
  • Testing and Safety
  • R&D
  • Learn
    • Learning Center
    • Tech Toolboxes
    • Webinars
  • Resources
    • Digital Editions
    • Diversity & Inclusion
  • Advertise
  • Subscribe

Lyten secures DoE grant for lithium-sulfur battery technology

By Michelle Froese | February 1, 2024

Lyten, Inc., a supermaterial applications company and provider of 3D Graphene materials, announced that it has secured a $4 million grant from the US Department of Energy (DoE) to accelerate the manufacturing of its advanced lithium-sulfur battery technology.

The grant, awarded by the DoE’s Energy Efficiency and Renewable Energy / Vehicle Technologies Office, specifically targets lithium-sulfur technologies that can alleviate offshore supply chain risk for EV batteries and increase EV driving range.

Using abundantly available and low-cost sulfur, the lithium-sulfur chemistry has the potential to deliver greater than twice the energy density of lithium-ion NMC (nickel, manganese, cobalt) chemistries. Additionally, the chemistry does not require critical minerals such as nickel and cobalt in the cathode or graphite in the anode, enabling a locally sourced, locally manufactured EV battery.

The DoE grant awards follow the passage of National Defense Authorization Act, signed into law last month with bi-partisan support, which will prohibit the US Defense Department from buying batteries produced by China’s largest manufacturers starting in October 2027. This ban reinforces the urgency to accelerate the development and rapid scale-up of rechargeable cells with alternative battery chemistries, like lithium-sulfur, that offer localized supply chains for strategic defense applications, and high energy density to support mobility and transportation electrification.

“We are encouraged by both the Department of Defense and Department of Energy’s support for alternative battery technologies, in particular breakthrough technologies like lithium-sulfur that are critical to establishing energy security and supply chain independence,” said Dan Cook, CEO and co-founder of Lyten. “The US has an opportunity to gain the lead in technological breakthroughs necessary to overcome barriers holding back mass scale electrification.”

The DoE award is supporting private industry and university research as part of this round of funding for lithium-sulfur. For this grant, Lyten is working with Stanford University, the University of Texas-Austin, and industrial partner Arcadium Lithium (formed via merger of Livent and Allkem). Separately, Lyten is a subrecipient on a DoE grant awarded to Purdue University to improve modeling capabilities for lithium-sulfur cells.

Lithium-sulfur is a chemistry known for decades to potentially hold two to three times the energy density of lithium-ion but was not envisioned to come into the market until the 2030s due to material science challenges. Lyten has accelerated this timeline by using its 3D Graphene material to develop a sulfur-graphene composite cathode.

In June 2023, Lyten opened a semi-automated, lithium-sulfur pilot line producing pouch and cylindrical cells on its 145,000-square-foot campus in Silicon Valley and will begin to deliver non-EV cells commercially in 2024.

In 3Q 2023, Lyten announced it had raised $200 million through a Series B round, bringing total investment up to $410 million to scale 3D Graphene applications and lithium-sulfur battery manufacturing. Lyten investors include a broad range of industry leaders, including Stellantis (third-largest auto manufacturer in the world), FedEx, Honeywell, and Walbridge.

You Might Also Like


Filed Under: Batteries, Technology News
Tagged With: lyten
 

Next Article

← Previous Article
Next Article →


 
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EV professionals.

Featured Contributions

  • What role do thermal interface materials (TIMs) play in EV battery systems?
  • How evolving demands are driving innovations in EV battery safety and materials
  • How large EV battery packs can be safely recycled without disassembly
  • Changing from traditional powertrains to electrified machines requires optimizing the hydraulic system components to reduce energy consumption and extend vehicle range. What factors impact electric vehicle system design?
  • How to safely detect minute physical Li-ion battery flaws
More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

Learning Center

EE Learning Center
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Sponsored Content

  • Converting custom materials for EV applications
  • Advantech Powers Versatile Electric Vehicle Charging Systems

EV Training Days

ev
EV Engineering & Infrastructure
  • 5G Technology
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • Design Fast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer’s Garage
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Contact Us

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search EV Engineering & Infrastructure

  • News
  • Articles
  • Batteries
  • Charging
    • Wireless Charging
    • Vehicle-to-Grid (V2G)
  • Electrification
  • Testing and Safety
  • R&D
  • Learn
    • Learning Center
    • Tech Toolboxes
    • Webinars
  • Resources
    • Digital Editions
    • Diversity & Inclusion
  • Advertise
  • Subscribe