EV Engineering & Infrastructure

  • News
  • Articles
  • Batteries
  • Charging
    • Wireless Charging
    • Vehicle-to-Grid (V2G)
  • Electrification
  • Testing and Safety
  • R&D
  • Learn
    • Learning Center
    • Tech Toolboxes
    • Webinars
  • Resources
    • Digital Editions
    • Diversity & Inclusion
  • Advertise
  • Subscribe

How does digital isolation contribute to sustainability?

By Jeff Shepard | October 17, 2023

In general, digital isolation can be implemented using capacitive, giant magneto restrictive (GMR), and magnetic technologies. The digitally isolated gate drivers used to drive silicon carbide (SiC) and gallium nitride (GaN) devices plus silicon power MOSFETs and IGBTs in green energy systems like electric vehicles (EVs) and solar inverters mostly rely on magnetic isolation techniques, including coreless transformers or coupled inductors with silicon dioxide (SiO2) insulation systems.

Industrial operations benefit from using high-efficiency motor drives. Galvanically isolated coreless transformers (CT), also called coupled inductor-based gate drivers, are key components enabling high reliability and high-efficiency motor drives. The CT isolation is fabricated on-chip and consists of metal spirals with SiO2 insulation (Figure 1). The resulting driver supports an input-to-output offset voltage of 2.3 kV, input-to-output propagation delay of 100 ns with a part-to-part variation of ±7 ns, and features a CMTI of 200 kV/µs. This device is also suited for use in solar inverters.

Figure 1. Isolated gate driver equivalent circuit (top) and simplified structure of the CT (bottom) (Image: Infineon).

Solar energy harvesting installations use 1.5 kV power buses to reduce cable cross-section, weight, and cost while delivering high power. That requires that the power switches in the inverter are rated for at least 1.7 kV, with many designs using 2 kV switches for additional reliability. Solar inverters employ a closed-loop architecture where a digital controller modulates the power switch duty cycles to force the inverter output voltage amplitude and phase to match the grid. The use of integrated galvanically isolated drivers eliminates the need for external isolation components and simplifies system design. Each driver output is isolated, enabling a mix of positive and negative voltage rails to be used without latch-up concerns.

In these designs, feedback to the inverter controller is provided by CMOS-isolated AC current sensors. Depending on the package, these sensors can have up to 5 kVrms isolation. As a result of their monolithic CMOS construction, these current sensors deliver higher accuracy and reliability over a wider temperature range compared to discrete current sense transformers. In addition, the sensor is reset on a cycle-by-cycle basis using the inverter gate control signals eliminating the need for a separate reset circuit.

Digital interfaces & ΣΔ
In motor control applications, optical encoder feedback and resolve-to-digital conversion are often used in the feedback control system. More recently, digital isolators and galvanically isolated analog-to-digital sigma-delta (ΣΔ) modulators have appeared. These devices feature a 3.75 kV standoff voltage and high pulse precision. That enables high-performance motor systems that meet the latest efficiency standards and provide the control needed to minimize the harmonic content on the output of solar inverters.

In EV DC charging stations, ΣΔ modulators are used to sense the input and output currents and voltages of the power factor controller (PFC) in the AC input stage and the DC/DC output stage connected to the battery pack. That requires a high accuracy ΣΔ modulator. Galvanic isolation can be used to eliminate stray currents that can cause data errors across the barrier. It also provides high levels of CMTI. The integrated solution has 6 kV SiO2 isolation technology and dual channels that can transfer data between an HV and LV domain at up to 100 Mbps with a pulse distortion below 3 ns (Figure 2).

Figure 2. Block diagram of a c (Image: STMicroelectronics).

Summary
Digitally isolated gate drivers are increasingly important in a range of green energy applications, from industrial motor drives to solar inverters and EV chargers. In addition, isolated AC current sensors and isolated ΣΔ modulators can contribute to improved performance and higher reliability.

References

  • Advanced Digital Isolation Technologies Boost Solar Power Inverter Reliability, Skyworks
  • Advantages of coreless-transformer gate drivers over gate drive optocouplers, Infineon
  • Galvanically isolated products for DC EV charging stations, STMicroelectronics
  • Isolated Gate Drivers, Analog Devices

You Might Also Like


Filed Under: EE World - EV ENGINEERING
Tagged With: FAQ
 

Next Article

← Previous Article
Next Article →


 
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EV professionals.

Featured Contributions

  • What role do thermal interface materials (TIMs) play in EV battery systems?
  • How evolving demands are driving innovations in EV battery safety and materials
  • How large EV battery packs can be safely recycled without disassembly
  • Changing from traditional powertrains to electrified machines requires optimizing the hydraulic system components to reduce energy consumption and extend vehicle range. What factors impact electric vehicle system design?
  • How to safely detect minute physical Li-ion battery flaws
More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

Learning Center

EE Learning Center
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Sponsored Content

  • Converting custom materials for EV applications
  • Advantech Powers Versatile Electric Vehicle Charging Systems

EV Training Days

ev
EV Engineering & Infrastructure
  • 5G Technology
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • Design Fast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer’s Garage
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Contact Us

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search EV Engineering & Infrastructure

  • News
  • Articles
  • Batteries
  • Charging
    • Wireless Charging
    • Vehicle-to-Grid (V2G)
  • Electrification
  • Testing and Safety
  • R&D
  • Learn
    • Learning Center
    • Tech Toolboxes
    • Webinars
  • Resources
    • Digital Editions
    • Diversity & Inclusion
  • Advertise
  • Subscribe
We use cookies to personalize content and ads, to provide social media features and to analyze our traffic. We also share information about your use of our site with our social media, advertising and analytics partners who may combine it with other information that you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.OkNoRead more