EV Engineering & Infrastructure

  • News
  • Articles
  • Batteries
  • Charging
    • Wireless Charging
    • Vehicle-to-Grid (V2G)
  • Electrification
  • Testing and Safety
  • R&D
  • Learn
    • Learning Center
    • Tech Toolboxes
    • Webinars
  • Resources
    • Digital Editions
    • Diversity & Inclusion
  • Advertise
  • Subscribe

Cornell Engineering team designs fast-charging lithium battery that eliminates “range anxiety”

By Michelle Froese | January 24, 2024

The below insight comes from Cornell Chronicle, a source of official news and part of Cornell University. The site publishes daily news about research, outreach, events, and the Cornell community. To read the full article, “Fast-charging lithium battery seeks to eliminate ‘range anxiety,’” by David Nutt, Cornell Chronicle, please click here.

 

A team at Cornell Engineering has developed a new lithium battery that can charge in under five minutes, currently faster than any such battery on the market. Most significantly, it does so while maintaining stable performance over extended cycles of charging and discharging.

The breakthrough could alleviate “range anxiety” among drivers who worry electric vehicles (EVs) cannot travel long distances without a time-consuming recharge.

“Range anxiety is a greater barrier to electrification in transportation than any of the other barriers, like cost and capability of batteries, and we have identified a pathway to eliminate it using rational electrode designs,” said Lynden Archer, Cornell’s James A. Friend Family Distinguished Professor of Engineering and dean of Cornell Engineering, who oversaw the project.

“If you can charge an EV battery in five minutes, I mean, gosh, you don’t need to have a battery that’s big enough for a 300-mile range. You can settle for less, which could reduce the cost of EVs, enabling wider adoption,” he added.

The team’s paper, “Fast-Charge, Long-Duration Storage in Lithium Batteries,” was published in Joule‘s January 16th issue. The lead author is Shuo Jin, a doctoral student in chemical and biomolecular engineering.

“Our goal was to create battery electrode designs that charge and discharge in ways that align with daily routine,” Jin said. “In practical terms, we desire our electronic devices to charge quickly and operate for extended periods. To achieve this, we have identified a unique indium anode material that can be effectively paired with various cathode materials to create a battery that charges rapidly and discharges slowly.”

Archer’s lab previously approached battery design by focusing on how ions move in electrolytes and crystallize at interfaces of metal anodes, then used this knowledge to manipulate the electrode morphology to make safer anodes for long-duration storage.

For their new lithium battery, the researchers took a different tack and focused on the kinetics of electrochemical reactions, specifically employing a chemical engineering concept termed the “Damköhler number.” This is essentially a measure of the rate at which chemical reactions occur, relative to the rate at which material is transported to the reaction site.

Identifying battery electrode materials with inherently fast solid-state transport rates — and low Damköhler numbers — helped the researchers pinpoint indium as an exceptionally promising material for fast-charging batteries.

The new study shows indium has two crucial characteristics as a battery anode:

  • An extremely low migration energy barrier, which sets the rate at which ions diffuse in the solid state
  • A modest exchange current density, related to the rate at which ions are reduced in the anode

The combination of those qualities – rapid diffusion and slow surface reaction kinetics — is essential for fast charging and long-duration storage.

This technology, paired with wireless induction charging on roadways, would shrink the size — and the cost — of batteries, making electric transportation a more viable option for drivers.

Read the full article from Cornell Chronicle here.

You Might Also Like


Filed Under: Technology News
Tagged With: cornellengineering
 

Next Article

← Previous Article
Next Article →


 
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EV professionals.

Featured Contributions

  • What role do thermal interface materials (TIMs) play in EV battery systems?
  • How evolving demands are driving innovations in EV battery safety and materials
  • How large EV battery packs can be safely recycled without disassembly
  • Changing from traditional powertrains to electrified machines requires optimizing the hydraulic system components to reduce energy consumption and extend vehicle range. What factors impact electric vehicle system design?
  • How to safely detect minute physical Li-ion battery flaws
More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

Learning Center

EE Learning Center
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Sponsored Content

  • Converting custom materials for EV applications
  • Advantech Powers Versatile Electric Vehicle Charging Systems

EV Training Days

ev
EV Engineering & Infrastructure
  • 5G Technology
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • Design Fast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer’s Garage
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Contact Us

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search EV Engineering & Infrastructure

  • News
  • Articles
  • Batteries
  • Charging
    • Wireless Charging
    • Vehicle-to-Grid (V2G)
  • Electrification
  • Testing and Safety
  • R&D
  • Learn
    • Learning Center
    • Tech Toolboxes
    • Webinars
  • Resources
    • Digital Editions
    • Diversity & Inclusion
  • Advertise
  • Subscribe
We use cookies to personalize content and ads, to provide social media features and to analyze our traffic. We also share information about your use of our site with our social media, advertising and analytics partners who may combine it with other information that you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.OkNoRead more