EV Engineering & Infrastructure

  • News
  • Articles
  • Batteries
  • Charging
    • Wireless Charging
    • Vehicle-to-Grid (V2G)
  • Electrification
  • Testing and Safety
  • R&D
  • Learn
    • Learning Center
    • Tech Toolboxes
    • Webinars
  • Resources
    • Digital Editions
    • Diversity & Inclusion
  • Advertise
  • Subscribe

Coreless current sensor achieves 2 μs response time for EV applications

By rtraiger | November 22, 2024

Melexis has unveiled the MLX91235, a new current sensor that eliminates the need for a ferromagnetic core. The MLX91235 expands Melexis’ portfolio, enabling larger currents to be measured through external primary conductors like PCB traces and busbars. It supports automotive and alternative mobility applications like inverters, battery management systems (BMSs), and low-voltage dc-dc converters.

Power electronic designers are constantly challenged by system size and weight in modern electric vehicles (EVs), resulting in an ongoing demand for smaller and lighter solutions. By eliminating the ferromagnetic concentrator, the gradiometric MLX91235 achieves a significantly smaller footprint than typical current sensor technologies and eliminates hysteresis-related measurement errors.

The differential measurement of the magnetic field between two internal sensing elements provides accurate, current feedback and ensures stray field effects are eliminated. Featuring a 500 kHz bandwidth and 2 μs response time, the sensor is ideally suitable for high-speed applications, such as motor control and converter applications.

The MLX91235’s intelligent digital architecture elevates the sensor’s offering, ensuring high measurement accuracy and allowing for the incorporation of several key functions that help to enhance development, calibration, and system integration. When dealing with intrinsic non-linearities, analog architectures often rely on piecewise linear compensations.

However, the MLX91235’s digital architecture offers the ability to implement more precise and sophisticated compensation, resulting in a more accurate and smoother output. The fully digital-based thermal compensation further ensures that the MLX91235 provides the highest accuracy measurement across its entire working conditions. 

The device’s ‘open’ calibration is configured through a standard serial peripheral interface (SPI) allowing for configuration in situ via any microcontroller unit (MCU). Compared to analog coreless sensors, digital calibration provides a more direct and significantly quicker experience, enabling easy adjustment of elements like digital gain correction. 

The built-in 16-bit over-current detection (OCD) allows for asymmetric thresholds and includes two configurable threshold ranges. It features a configurable detection time with a minimum duration of 2 μs and an optional debounce strategy. This strategy helps to avoid false positives in harsher electromagnetic compatibility (EMC) environments. Further enhancing its value, the MLX91235 also includes a 10-bit temperature feedback mechanism, enabling accurate measurement of junction temperature that is transmitted through a high-speed SPI output.

The MLX91235 is ISO 26262 compliant as an ASIL B Safety Element out of Context (SEoOC). Going beyond ASIL B requirements, it also incorporates a sophisticated built-in self-test feature that can be triggered via SPI. This functionality allows the sensor to report critical information like temperature, under-voltage, and mechanical stress. Notably, unlike conventional diagnostics, this functionality encompasses the complete signal chain, up to the application MCU that reads the sensor.

Designed to meet the needs of automotive and industrial current sensing applications, the MLX91235 supports PCB and busbar current sensing in systems such as inverters, low-voltage dc-dc converters, chargers, electrically heated catalysts (EHCs), BMSs, smart pyro fuses, and more. 

You Might Also Like


Filed Under: Sensor Tips, Technology News
Tagged With: melexis
 

Next Article

← Previous Article
Next Article →


 
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EV professionals.

Featured Contributions

  • What role do thermal interface materials (TIMs) play in EV battery systems?
  • How evolving demands are driving innovations in EV battery safety and materials
  • How large EV battery packs can be safely recycled without disassembly
  • Changing from traditional powertrains to electrified machines requires optimizing the hydraulic system components to reduce energy consumption and extend vehicle range. What factors impact electric vehicle system design?
  • How to safely detect minute physical Li-ion battery flaws
More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

Learning Center

EE Learning Center
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Sponsored Content

  • Converting custom materials for EV applications
  • Advantech Powers Versatile Electric Vehicle Charging Systems

EV Training Days

ev
EV Engineering & Infrastructure
  • 5G Technology
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • Design Fast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer’s Garage
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Contact Us

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search EV Engineering & Infrastructure

  • News
  • Articles
  • Batteries
  • Charging
    • Wireless Charging
    • Vehicle-to-Grid (V2G)
  • Electrification
  • Testing and Safety
  • R&D
  • Learn
    • Learning Center
    • Tech Toolboxes
    • Webinars
  • Resources
    • Digital Editions
    • Diversity & Inclusion
  • Advertise
  • Subscribe