EV Engineering & Infrastructure

  • News
  • Articles
  • Batteries
  • Charging
    • Wireless Charging
    • Vehicle-to-Grid (V2G)
  • Electrification
  • Testing and Safety
  • R&D
  • Learn
    • Learning Center
    • Tech Toolboxes
    • Webinars
  • Resources
    • Digital Editions
    • Diversity & Inclusion
    • Voices
  • Advertise
  • Subscribe

Ambarella wins gold in the coveted 2023 LEAP Awards

By Michelle Froese | October 20, 2023

Ambarella, Inc., an edge AI semiconductor company, has won GOLD in the recently completed 2023 Leap Awards for product innovation.

The LEAP Awards celebrate the most innovative and forward-thinking products in design engineering. Ambarella won in the category of embedded computing, which covers microcontrollers (MCUs), microprocessors (MPUs), or other custom-designed chips, and supporting software in ROM (Read Only Memory) that comprise embedded computing.

Also included in this category are development tools and operating systems, computer boards, systems, and components, storage, and wired and wireless connectivity, including IoT and IIoT.

Ambarella’s winning entry was for its Centrally Processed 4D Imaging Radar Architecture for Autonomous Mobility Systems

The company launched the world’s first centralized 4D imaging radar architecture, which allows both central processing of raw radar data and deep, low-level fusion with other sensor inputs — including cameras, lidar, and ultrasonics. This breakthrough architecture provides greater environmental perception and safer path planning in AI-based ADAS and L2+ to L5 autonomous driving systems.

It features Ambarella’s Oculii radar technology, including the only AI software algorithms that dynamically adapt radar waveforms to the surrounding environment, providing high angular resolution of 0.5 degrees, an ultra-dense point cloud up to 10s of thousands of points per frame and a long detection range up to 500+ meters.

All of this is achieved with an order of magnitude fewer antenna MIMO channels, which reduces the data bandwidth and achieves significantly lower power consumption than competing 4D imaging radars.

The LEAP Awards’ judges commented: “An approach that is a departure from the norm in autonomous mobility systems, allowing for better environmental and path perception. A leap forward in integrating a broad range of optical, location, lidar, and radar technologies.”

To create this unique, cost-effective new architecture, Ambarella optimized the Oculii algorithms for its CV3 AI domain controller SoC family and added specific radar signal processing acceleration. The CV3’s industry-leading AI performance per watt offers the high compute and memory capacity needed to achieve high radar density, range, and sensitivity.

Additionally, a single CV3 can efficiently provide high-performance, real-time processing for perception, low-level sensor fusion and path planning, centrally and simultaneously, within autonomous vehicles and robots.

“No other semiconductor and software company has advanced in-house capabilities for both radar and camera technologies, as well as AI processing,” said Fermi Wang, president and CEO of Ambarella. “This expertise allowed us to create an unprecedented centralized architecture that combines our unique Oculii radar algorithms with the CV3’s industry-leading domain control performance per watt to efficiently enable new levels of AI perception, sensor fusion, and path planning that will help realize the full potential of ADAS, autonomous driving and robotics.”

 

You Might Also Like


Filed Under: Technology News
Tagged With: ambarella
 

Next Article

← Previous Article
Next Article →


 
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EV professionals.

Featured Contributions

  • What role do thermal interface materials (TIMs) play in EV battery systems?
  • How evolving demands are driving innovations in EV battery safety and materials
  • How large EV battery packs can be safely recycled without disassembly
  • Changing from traditional powertrains to electrified machines requires optimizing the hydraulic system components to reduce energy consumption and extend vehicle range. What factors impact electric vehicle system design?
  • How to safely detect minute physical Li-ion battery flaws
More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

Learning Center

EE Learning Center
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Sponsored Content

  • Converting custom materials for EV applications
  • Advantech Powers Versatile Electric Vehicle Charging Systems

EV Training Days

ev
EV Engineering & Infrastructure
  • 5G Technology
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • Design Fast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer’s Garage
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Contact Us

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search EV Engineering & Infrastructure

  • News
  • Articles
  • Batteries
  • Charging
    • Wireless Charging
    • Vehicle-to-Grid (V2G)
  • Electrification
  • Testing and Safety
  • R&D
  • Learn
    • Learning Center
    • Tech Toolboxes
    • Webinars
  • Resources
    • Digital Editions
    • Diversity & Inclusion
    • Voices
  • Advertise
  • Subscribe